Course Curriculum

    1. Pre Test

    1. Unit 1: The Concept of Artificial Intelligence

    2. 1.1 Definition of Artificial Intelligence

    3. 1.2 Types and Subsets of Artificial Intelligence

    4. 1.3 Definition of Machine Learning

    5. 1.4 Disciplines Related to Machine Learning

    6. 1.5 Types and Choices of Machine Learning-based Data Analysis

    7. 1.6 Procedures for Machine Learning-based Data Analysis

    8. 1.7 Reasons For Machine Learning

    9. 1.8 Limitations of Machine Learning

    10. Unit 2: Applications of AI

    11. 2.1 Applications of Artificial Intelligence

    12. 2.2 Image Recognition

    13. 2.3 Computer Vision & Machine Vision

    14. 2.4 Speech Intelligence

    15. Unit 3: Techniques in Artificial Intelligence

    16. 3.1 Edge AI

    17. 3.2 Medical Imaging & Diagnostics

    18. 3.3 Autonomous Vehicle

    19. 3.4 Reinforcement Learning

    20. 3.5 Conversational AI

    21. 3.6 GAN, XAI, Synthetic Training Data

    22. Unit 4: Artificial Intelligence: Trends and Markets

    23. 4.1 AI Trends

    24. 4.2 AI Markets

    25. 4.3 AI in Sustainable Energy

    26. 4.4 AI in Financial Services

    27. 4.5 AI in Government

    28. 4.6 AI in Healthcare

    29. 4.7 IoT and AI in Agriculture

    30. Unit 5: Course Roadmap

    31. 5.1 Artificial Intelligence Course Roadmap

    32. 5.2 Category of Machine Learning Techniques

    33. Introduction to AI (Summary)

    34. Chapter 1: Introduction to Artificial Intelligence

    1. Unit 1: Introduction

    2. 1.1 Installing Anaconda for Python

    3. 1.2 Intro to Mathematics

    4. 1.3 Mathematical Symbols

    5. Unit 2: Basic Math for Data Science

    6. 2.1 Algebra

    7. 2.2 Sequence

    8. 2.3 Absolute Value and Euclidean Distance

    9. 2.4 Sets

    10. 2.5 Concept of Functions

    11. 2.6 Exponential and Logarithmic Functions

    12. 2.7 Natural Logarithms

    13. 2.8 Sigmoid Functions

    14. 2.9 Trigonometric Functions

    15. Unit 3: Understanding Data Science: Vector

    16. 3.1 Vector

    17. 3.2 Vector Norm

    18. 3.3 Inner Product

    19. 3.4 Orthogonal Condition

    20. 3.5 Normal Vector

    21. Cosine Similarity

    22. Unit 4: Understanding Data Science: Matrix

    23. 4.1 Calculating Matrix

    24. 4.2 Reverse Matrix

    25. 4.3 Linear Transformation

    26. 4.4 Eigenvalues and Eigenvectors

    27. Unit 5: Understanding Deep Learning: Derivatives

    28. 5.1 Limits

    29. 5.2 Differential Coefficient and Derivatives

    30. 5.3 Differential Method

    31. 5.4 Difference Between Logarithmic and Exponential

    32. 5.5 Derivatives of Composite Functions

    33. 5.6 High Order Derivatives and Partial Derivatives

    34. 5.7 Derivative of the Sigmoid Function

    35. Chapter 2: Math for Data Science (Slides)

    36. Chapter 2: Quiz

    37. Live Session for Chapter 2

    1. Unit 1: NumPy Array Data Structure for Optimal Computational Performance

    2. 1.1. NumPy Arrays

    3. 1.2. NumPy Array Basics

    4. 1.3. NumPy Array Operations

    5. 1.4. NumPy Indexing and Slicing

    6. 1.5. Array Transposition and Axis Swap

    7. Unit 2: Optimal Data Exploration Through Pandas

    8. 2.1. Pipelines: Data Structures According to Data Types

    9. 2.2.1. Pandas Series and DataFrames I

    10. 2.2.2. Pandas Series and DataFrames II

    11. 2.2.3. Pandas Series and DataFrames III

    12. 2.3. Merging and Binding DataFrames

    13. 2.4. DataFrame Sorting and Multi-Index

    14. 2.5. Examining the Characteristics of Data Through Descriptive Statistics and Data Samples

    15. Unit 3: Pandas Data Preprocessing for Optimal Model Execution

    16. 3.1. Data Preprocessing

    17. 3.2. Identifying Data Properties

    18. 3.3. Checking for Missing Data

    19. 3.4. Checking and Processing Duplicate Data

    20. 3.5. Data Feature Engineering

    21. Unit 4: Data Visualization for Various Data Scales

    22. 4.1. Intro to Data Visualization

    23. 4.2. Graphs for Continuous Data Summary

    24. 4.3. Graphs for Categorical Data Summary

    25. 4.4. Visualization for Matplotlib & Pandas

    26. 4.5. Advanced Graphing with Seaborn

    27. Chapter 3: Exploratory Data Analysis

    28. Live Session for Chapter 3

    29. Chapter 3: Quiz

    1. Introduction

    2. Unit 1: Understanding of Probability

    3. 1.1 Probability Theory

    4. 1.2 Probability Rules

    5. 1.3 Random Variable

    6. 1.4 Discrete Probability Distribution

    7. Unit 2: Understanding of Statistics I

    8. 2.1 Continuous Probability Density

    9. 2.2 Conjoint Probability

    10. Unit 3: Understanding of Statistics II

    11. 3.1 Descriptive Statistics

    12. 3.2 Central Limit Theorem

    13. 3.3 Estimation Theory

    14. Unit 4: Statistical Hypothesis and Testing

    15. 4.1 Principles of Hypothesis Testing

    16. 4.2 Hypothesis Testing in Action

    17. Chapter 4: Probability & Statistics

    18. Chapter 4 Quiz

    19. Live session for Chapter 4

    1. Introduction

    2. Unit 1: Machine Learning Based Data Analysis

    3. 1.1 What is Machine Learning?

    4. 1.2 Python scikit-learn Library for Machine Learning

    5. 1.3 Preparation and Division of Dataset

    6. 1.4 Data Pre-processing for Making a Good Training Dataset

    7. 1.5 Practicing to Find an Optimal Method to Solve Problems with scikit-learn

    8. Unit 2: Application of Supervised Learning Model for Numerical Prediction

    9. 2.1 Training and Testing in Machine Learning

    10. 2.2 Linear Regression Basics

    11. 2.3 Linear Regression Diagnostics

    12. 2.4 Other Regression Types

    13. 2.5 Practicing the Supervised Learning Model for Numerical Prediction

    14. Unit 3: Application of Supervised Learning Model for Classification

    15. 3.1 Training and Testing in Machine Learning

    16. 3.2 Logistic Regression Basics

    17. 3.3 Logistic Regression Performance Metrics

    18. Unit 4: Decision Tree

    19. 4.1 Tree Algorithm

    20. Unit 5: Naïve Bayes Algorithm

    21. 5.1 Naïve Bayes Algorithm

    22. Unit 6: KNN Algorithm

    23. 6.1 KNN Algorithm

    24. Unit 7: SVM Algorithm

    25. 7.1 SVM Algorithm

    26. Unit 8: Ensemble Algorithm

    27. 8.1 The Concept of Ensemble Algorithm and Voting

    28. 8.2 Bagging & Random Forest

    29. 8.3 Boosting

    30. Chapter 5 Quiz

    31. Machine Learning 1 - Supervised Learning

    32. Live Session for Chapter 5

Artificial Intelligence

  • 3 Months
  • 240 Hours of training